
ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

LONG-HORIZON VALUE GRADIENT METHODS
ON STIEFEL MANIFOLD

M.Sc. THESIS

Tolga Ok

Department of Computer Engineering

Computer Engineering Programme

DECEMBER 2022

ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

LONG-HORIZON VALUE GRADIENT METHODS
ON STIEFEL MANIFOLD

M.Sc. THESIS

Tolga Ok
(504181535)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Assoc. Prof. Nazım Kemal ÜRE

DECEMBER 2022

Tolga Ok, a M.Sc. student of ITU Graduate School student ID 504181535 successfully
defended the thesis entitled “LONG-HORIZON VALUE GRADIENT METHODS ON
STIEFEL MANIFOLD”, which he/she prepared after fulfilling the requirements spec-
ified in the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Nazım Kemal ÜRE
Istanbul Technical University

Jury Members : Assoc. Prof. Yusuf YASLAN
İstanbul Technical University

Adjunct Prof. Volkan VURAL
University of California San Diego

..............................

Date of Submission : 29 December 2022
Date of Defense : 29 December 2022

v

vi

To my family and friends,

vii

viii

FOREWORD

I am greatly appreciative of the support and goodwill of my family and friends, and I
want to express my particular thanks to my advisor Professor Nazım Kemal Üre who
has been incredibly supportive of me during my master studies and whose guidance
contributed to the completion of this thesis.

December 2022 Tolga Ok

ix

x

TABLE OF CONTENTS

Page
FOREWORD . ix
TABLE OF CONTENTS . xi
ABBREVIATIONS. xiii
SYMBOLS . xv
LIST OF FIGURES . xvii
SUMMARY . xix
1. INTRODUCTION . 1

1.1 CONTRIBUTIONS. 5
1.2 RELATED WORKS . 7

1.2.1 Value Gradients . 7
1.2.2 Unitary Recurrent Networks . 11

2. BACKGROUND . 13
2.1 MARKOV DECISION PROCESS. 13
2.2 POLICY GRADIENTS. 14

2.2.1 REINFORCE . 14
2.2.2 Actor Critic . 15
2.2.3 Generalized Advantage Estimation. 17

2.3 PROXIMAL POLICY OPTIMIZATION . 18
2.4 VALUE GRADIENTS. 22

2.4.1 Reparameterization. 22
2.4.2 Stochastic Value Gradient . 23

3. METHOD . 27
3.1 PARAMETERIZATION . 27

3.1.1 RIEMANNIAN GRADIENT DESCENT . 29
3.1.2 Non-Linearity . 30

3.2 VALUE GRADIENT ON STIEFEL MANIFOLD. 31
3.3 VALUE GRADIENT PROXIMAL POLICY OPTIMIZATION 33

4. EXPERIMENTS . 37
4.1 DISCRETE STATE SPACE . 37
4.2 DELAYED REWARD LOOKUP . 40
4.3 ROBOTIC CONTROL TASK . 42

5. CONCLUSIONS . 45
5.1 FUTURE DIRECTIONS . 46

REFERENCES . 49
. 55

xi

xii

ABBREVIATIONS

TD : Temporal Difference
NN : Neural Network
RL : Reinforcement Learning
GPI : Generalized Policy Iteration
PG : Policy Gradient
PPO : Proximal Policy Optimization
GAE : Generalized Advantage Estimation
MBLR : Model Based Reinforcement Learning
VG : Value Gradient
AC : Actor Critic
St : Stifel manifold
DPG : Deterministic Policy Gradient
VG-PPO : Value Gradient Proximal Policy Optimization
SAC : Soft Actor Critic
SVG : Stochastic Value Gradient
SAC-SVG : Soft Actor Critic Stochastic Value Gradient
GRU : Gated Recurrent Unit
MBPO : Model Based Policy Optimization
DDPPO : Directional Derivative Projection Policy Optimization
NLP : Natural Language Processing
DT : Decision Transformer
RNN : Recurrent Neural Network
RGD : Riemanninan Gradient Descent
MC : Monte Carlo
KL : Kullback–Leibler
TRPO : Trust Region Policy Optimization

xiii

xiv

SYMBOLS

γ : Discount factor
λ : Trace delay parameter
T, D : Rollout and transition buffer
n : Rollout length
s, a, r, s′ : State, action, reward, and next state
r(s, a, s′), p : Reward function and transition distribution
dπ, pπ : Policy aware stationary state and transition distributions
π(a|s), µθ(s) : Policy distribution and deterministic policy function
V π(s) : State value function
Qπ(s, a) : State-action value function
Aπ(s, a) : Advantage function
Gπ(s) : Policy return
vϕ(s) : State value approximation
δπ(s) : Temporal difference

xv

xvi

LIST OF FIGURES

Page

Figure 4.1 : Decision Maze environment . 38
Figure 4.2 : Gradient heatmap on a random trajectory . 39
Figure 4.3 : Log-trick vs reparameterization on fixed sized trajectories 40
Figure 4.4 : Delayed Reward Lookup environment VG-PPO comparison 41
Figure 4.5 : Comparison of the model functions with and without Stiefel

manifold constraint. The plots show the statistics of the gradient
magnitude of all actions over the length of the trajectory. 42

Figure 4.6 : Walker-2d environment VG-PPO comparison . 43

xvii

xviii

LONG-HORIZON VALUE GRADIENT METHODS
ON STIEFEL MANIFOLD

SUMMARY

Sequential decision-making algorithms play an essential role in building autonomous
and intelligent systems. In this direction, one of the most prominent research fields
is Reinforcement Learning (RL). The long-term dependencies between the actions
performed by a learning agent and the rewards returned by the environment introduce
a challenge in RL algorithms. One of the ways of overcoming this challenge is the
introduction of the value function approximation. This allows policy optimization in
RL algorithms to rely on immediate state value approximation and simplifies policy
learning. In practice, however, we use value approximations that involve future
rewards and values from the truncated future trajectories with a decaying weighting
scheme, such as in TD(λ), to make a better trade between the bias and variance of the
value estimator.

Policy Gradients (PG), a prominent approach in model-free paradigm, rely on the
correlation between past actions and the future rewards within truncated trajectories
to form a gradient estimator of the objective function with respect to the policy
parameters. However, as the length of the truncated trajectories increases or the λ
parameter approaches 1, akin to the use of Monte Carlo (MC) sampling, the variance in
the gradient estimator of the PG objective increases drastically. Although the gradient
estimator in PG methods has zero bias, the increase in variance leads to sample
inefficiency, since the approximated value of an action may contain future rewards
within the truncated trajectory that are not related to that action.

One of the alternatives to the PG algorithms that do not introduce high variance during
policy optimization is the Value Gradient (VG) algorithm which utilizes the functional
relation between the past actions and the future state values on a trajectory. This
estimation requires a differentiable model function; hence, VG algorithms are known
as model-based Reinforcement Learning (MBLR) approaches. Although it is possible
to apply the VG objective on simulated sub-trajectories, as is the case for most MBLR
approaches, the most effective approach is to apply the VG objective on observed
trajectories via the means of reparameterization. If the observed trajectories are used,
VG algorithms avoid the issue of compounding errors that occur when the model
function is called iteratively with its previous prediction to simulate future trajectories.
However, reparameterization does not solve the compounding error problem during
the backward pass if the model being used by the VG objective is approximated by an
unconstrained function.

In this thesis, we propose a model function represented by a neural network where
the parameters of the affine layers lie on Stiefel manifold (St) such that the Jacobian

xix

matrices of the affine layers are unitary matrices at every state-action pair. During the
model optimization step, we employ Riemannian Gradient Descent (RGD) through
parameterization with a matrix exponential function as the submersion to maintain
the unitary characteristics of the parameters. We combine the affine layers with
non-linearities that preserve the gradient norm so that the VG objective does not suffer
from vanishing or exploding gradient issues. This approach differs from previously
proposed techniques that aim to relax the vanishing or exploding gradient problem,
which tends to make the optimization unstable for longer trajectories by providing a
direct and mathematically grounded solution.

We built a benchmarking environment where the actions are deliberately set to contain
only long-term relations with the future state values. Here, we show that the proposed
model function surpasses the previously applied techniques during policy optimization
with VG objective on long trajectories. We further propose the VG-PPO algorithm,
which combines Proximal Policy Optimization (PPO) with the VG approach that is
equipped with the proposed family of model functions. We apply VG-PPO on the
MuJoCo benchmark and obtained comparable results to that of PPO even when the
value approximation is performed by the MC method over long trajectories. We
conclude that the VG methods are sensitive to the bias in the model approximation, yet,
they provide a low variance gradient estimator for policy optimization when combined
with a suitable model family. Moreover, we show that VG methods are able to capture
long term dependencies if the underlying model function is not divergent such as we
proposed in this work.

xx

1. INTRODUCTION

Policy optimization in sequential decision-making problems involves decision-making

over long horizons. The given decisions may have a long-lasting effect on the dynamics

of the system. In Reinforcement Learning, we formalize such systems with Markov

Decision Processes (MDP) and define a value function V π(S) that captures the future

effect of a decision given by a policy π(S). In general, the optimization algorithms

are grouped by Generalized Policy Iteration (GPI) [1], where the value function

approximation is followed by a policy update with the most recent approximate values

in an alternating fashion. The value function can be estimated using immediate

reward and values via the Bellman equation, which requires a value approximation

or mapping, or using sampled future rewards by a Monte Carlo estimator [1]. These

approaches represent the two ends of the trade between bias and variance within the

value estimation. In practice, it has been observed that the combinations of these

estimations, such as in TD(λ), result in higher performance since the hybrid approaches

bring more control over this trade [2].

Value estimation is essential for building a policy function. Although it is possible to

form a policy function by directly using the value estimations if there are finitely many

decisions that can be made at a given state, the explicit representation of the policy

allows finer policy optimization and makes it applicable to more than discrete action

spaces. In that regard, Policy Gradient (PG) is one of the most prominent model-free

approaches that explicitly form a policy function generally as a Neural Network (NN).

The first algorithm of this family is REINFORCE [3], in which the value estimation is

performed by a Monte Carlo estimator. The policy gradient estimator of REINFORCE

is bias-free since the value function is not approximated and estimated by future reward

samples using Monte Carlo. The policy optimization in PG methods relies on the

correlation between the actions and future values, which may include sampled rewards

from the future part of the trajectory. Due to that, the policy optimization objective

1

of PG methods does not require a known or an approximated model function of the

environment; hence PG methods are called model-free. However, the correlation-based

gradient estimator of the policy optimization objective has high variance, which results

in sample inefficiency.

One way of reducing the variance brought by the policy gradient estimator of the

PG method is to introduce a value approximation that bootstraps to itself after

n-steps or a weighted sum of multiple value estimators. The latter approach is

formalized in Generalized Advantage Estimator (GAE)(λ) [4], which is similar to

TD(λ) but implements it for truncated trajectories. PG methods that employ a value

approximation are called Actor-Critic (AC) algorithms, where the actor stands for

the policy function, and the critic stands for the approximate value function. As

the truncation increases or the parameter λ decreases, which controls the amount of

bootstrapping in the value estimation, the variance in the gradient estimator decreases.

However, in practice, high values of λ and longer truncated trajectories yield higher

performance [5]. In the truncated part of the trajectory, if the parameter λ is close to

1, the value estimate approaches the Monte Carlo value estimation, and as a result, AC

algorithms suffer from high variance in the policy gradient estimator.

In this thesis, we focus on Value Gradient (VG) methods, which offer an alternative

objective to that of PG methods that rely on the functional relation between past

actions and future values on a trajectory instead of relying on their correlation. The

functional relation is formed using an approximate or a given differentiable model

function of the environment. Hence, this is a Model-Based Reinforcement Learning

(MBLR) approach. Having a model function provides a low variance policy gradient

estimator but may introduce bias to the estimator if the model function is approximated,

which is usually the case in practice. Besides the trade-off between the bias and

variance on the value estimation introduced by value approximation, VG methods

introduce another bias-variance trade to the policy gradient estimator. While value

approximation provides a low variance target for policy optimization, VG provides

variance reduction within the policy optimization via the use of a model function or its

approximation. Hence, these two approaches, value approximation and VG objective

2

are compatible and can be used in combination to further reduce the variance of the

policy gradient estimator.

There are various approaches for utilizing a model function in MBLR methods. The

most noticeable one is to simulate artificial interactions between the agent and the

approximate model function of an environment and use a model-free policy gradient

algorithms such as Asynchronous Advantage Actor Critic (A3C) [6], PPO [5] to

optimize the policy over these artificial interactions [7]–[9]. However, in practice,

this approach is generally difficult to work with due to the compounding error issue.

In which the approximation error of the model function at every step accumulates

and grows exponentially, and resulting simulated trajectories become improbable,

or the growing approximation error may cause numerical instabilities. Combining

the approximate model function with the value approximation on short sequences is

thus the preferred approach instead of simulating a trajectory starting from a given

state until the terminal state is simulated. Another improvement, proposed by [7],

in this direction, runs the approximate model on a latent space that only preserves

and encodes the information related to the policy optimization. Until recently, MBLR

methods that utilize the model function for simulating artificial trajectories have only

been successfully applied to a small set of challenging environments such as Go

[10] and Chess [11], and generally lacked the performance of the pure model-free

approaches. Recently, there have been successful applications of such approaches [7,8]

by combining the improvements proposed for MBLR and with powerful architectures

on common RL benchmarks, namely ATARI [12] and MujoCo [13].

Alternatively, there are several approaches in MBLR that aims to improve the value

approximation and policy optimization by introducing auxiliary loss functions to value

and policy objectives. In these approaches, the NNs that represent value approximation

and the policy function share lower layers, usually all the layers except the final

ones, and the auxiliary losses contribute to the optimization of these layers in an

unsupervised manner [14]. This approach provides less noisy gradients to the shared

layers, but the direction in which the auxiliary objective pulls the parameters may

not be optimal for policy optimization. Similar approaches exist that utilize the

model function to improve the exploration aspect of the policy learning by driving

3

the exploration so that less visited states would get high priority [15]. Overall, these

approaches are most advantageous when the reward function is extremely sparse such

that the first encounter of a non-zero reward requires long exploration sessions. In that

case, these approaches provide better guidance to the policy than random gradients

from the policy gradient estimator.

The focus of this thesis, VG methods, forms a computational graph over a truncated

trajectory using the differentiable model, policy, and reward functions. Since the model

and reward functions are usually unknown, we build differentiable approximations

for them using NNs. On this computational graph, the objective is to maximize the

value estimate at every state, which propagates the gradients backward through the

truncated trajectory. Hence, unlike previously mentioned MBRL approaches, VG

methods utilize the model functions to provide a policy gradient estimate that has

less variance compared to that of PG. In order to form a computational graph using

the approximate model function, the next state prediction of the model function must

be fed as the state variable in the next iteration. Therefore, the computation graph

to which the VG objective is applied is constrained to be formed over the simulated

trajectories. However, the VG objective that is built on top of the simulated trajectories

would suffer from the compounding error problem in the forward pass. To mitigate that

issue, Heess et al. [16] proposed the Stochastic Value Gradient (SVG) algorithm, which

enables VG objective to be formed over sampled truncated trajectories. The main

mechanism in SVG that allows using the sampled transitions instead of simulated ones

is reparameterization. SVG forms a computational graph on sampled trajectories, and

since, at every state, reparameterization corrects the approximation error of the model

function, it eliminates the compounding error problem in the forward pass. In addition,

SVG provides a spectrum of policy gradient estimators that varies with the truncation

of the sampled trajectories. At the one end of this spectrum, there is VG objective that

is built on immediate value and action, which covers Deterministic Policy Gradient

(DPG) [17]–[20] algorithms. DPG algorithms are unique in this spectrum as they do

not require a model function; hence they are categorized as model-free approaches

since the gradient of the state-action value function with respect to immediate action

does not involve the model function. The other end of this spectrum is called SVG(∞),

4

in which the gradient of a state value propagates through the entire trajectory backward

in time.

Although SVG solves the compounding error problem in the forward pass, during

the backward pass of the computational graph, in which the VG objective is formed

over, the gradient of the state values tends to explode or diminish. There have been

several proposals for the model function, such as using independent features for the

state prediction or using gated architectures to mitigate this issue [16,21]. But they

have failed to solve this issue, and hence, in practice, SVG algorithms are only used on

short truncated trajectories. This thesis proposes a particular family of model functions

that preserves the norm of the gradient during the backward pass.

We empirically show that when the aforementioned property is satisfied, VG methods

are able to capture the long relations between actions and states. Hence, the proposed

family of model functions enables VG methods on a variety of value estimators. The

next subsection gives a more detailed description of the contributions made within this

work.

1.1 CONTRIBUTIONS

There are two major contributions in this thesis. We briefly summarize them in the list

below.

• A family of model functions that enables VG methods on long horizons.

• VG-PPO algorithm that implements the VG objective in Proximal Policy

Optimization

The main contribution of this work aims to improve the VG algorithms by providing

a family of model functions and its optimization procedure that solves the gradient

exploding and vanishing issue of SVG methods. We observed that when the gradient of

a state value is preserved, the policy gradient estimate of the VG objective successfully

produces a low variance gradient estimation for the policy parameters. In fact, in the

case where the model approximation error is significantly low, the estimated gradients

5

are directly related to how much a past action affects the state value of which the

estimation is made.

The family of model functions proposed by this thesis has the gradient norm-preserving

property. We propose to use NNs as the model function, in which the parameters

of the affine layers are orthonormal k-frames. Between the affine layers, we use

non-linearities that also have the gradient norm-preserving property or that make a

slight change in the norm. Hence, the overall architecture preserves this property.

During the optimization steps, we maintain the gradient norm-preserving characteristic

of the proposed model function by mapping the updated parameters onto the set of

orthonormal k-frames via a proper mapping function. The set of orthonormal k-frames

is represented by the Stiefel manifold (SO). Hence, we adopt Riemannian Gradient

Descent (RGD) via parameterization instead of regular Gradient Descent (GD) so

that the characteristic is maintained after every optimization step. We employ matrix

exponential for the submersion from Euclidean space to the Stiefel manifold due to its

simplicity and availability in the deep learning frameworks [22].

The second contribution is the application of the VG objective with the proposed

model function to the Proximal Policy Optimization (PPO) algorithm, which we

call VG-PPO. Compared to other AC algorithms, PPO relies on longer truncated

trajectories where the proposed model function makes it possible to implement the VG

objective. In order to compare the model functions and test the proposed algorithm,

we made a benchmarking environment where the effect of an action on a future state

value is delayed, and the relation between an action and a reward is one-to-one, that

is a past action only affect one future reward on the trajectory. Therefore, in this

environment, the correlation-based gradient estimator of PG methods performs poorly

since a value estimation in a state includes mostly unrelated rewards, and gradient

estimators of PG methods are unable to make a distinction, whereas gradient estimate

in VG methods produces a non-zero gradient only for the related action. We also

compared the previously proposed model functions with the one that is proposed in

this work. In that comparisons, for longer trajectory lengths, our approach is the only

one that yields optimal performance. We also compared Actor-Critic algorithms such

6

as vanilla PPO and Advantage Actor Critic (A2C) with VG-PPO in this benchmark

and show that VG-PPO is the fastest converging one to the optimal performance.

1.2 RELATED WORKS

1.2.1 Value Gradients

VG method is introduced by Fairbank [23] as a deterministic approach for policy

optimization. It is asserted that the VG objective is significantly more efficient on

a control task with known differentiable dynamics. Fairbank shows the similarity

between PG and VG-based learning algorithms when λ is set to 1 and claims that VG

methods make value approximation redundant. Moreover, the resemblance between

the policy update with VG objective and backpropagation through time (BPTT) is

stated, which naturally arises since the value function functionally depends on the past

actions on a trajectory. Fairbank does not touch upon the model approximation or

learning and hence, leaves it to the following works.

The first generally applicable VG algorithm is proposed by Hess et al. [16] that

provides two different modeling of the VG objective with a differentiable model

approximation. The first approach applies the VG objective to the simulated

trajectories of the approximate model function, where it is stated that this

approach suffers from compounding error issues. The second approach utilizes

reparameterization to enable VG methods on sampled trajectories. Reparameterization

corrects the model error at every step throughout the trajectory, hence preventing

the compounding model error problem. They named the VG algorithm that utilizes

reparameterization as Stochastic Value Gradient (SVG) since the output of the model

function is represented by a Gaussian function where the model function estimates the

parameters of this distribution. Depending on the length of the truncated trajectory in

which the VG objective is applied, they proposed a spectrum of SVG(k) algorithms

where the index k determines the length of the truncated trajectories. In their

experiment, they indicated that an off-policy variant that makes use of an experience

replay, SVG(1)-ER, surpasses other SVG variants, including the model-free variant

known as Deep Deterministic Policy Gradient (DDPG) and a vanilla AC algorithm.

7

It has been noted that the gradient exploding and vanishing problem is one of the

shortcomings of the SVG algorithm. To mitigate this issue, they proposed a model

function where the outputs of the functions are independent of each other. Their

empirical findings indicate that SVG is only suitable for extremely short trajectories;

as the length of the trajectory, k, increases, the performance of SVG variants degrades.

They left the investigation of eligible model function that does not lead gradients to

divergence as future work.

Another application of the VG objective is proposed by Amos et al [21]. They

combined model-free Soft Actor Critic (SAC) [24] algorithm with SVG and provided

a model-based entropy regularized policy learning algorithm SAC-SVG(k). Similar

to SVG, they build a computational graph on truncated trajectories and the length of

which is denoted by k. They applied SAC-SVG to a set of MuJoCo [13] environments

and compared it with SAC and several model-based approaches. They were able to

surpass the performance of SAC in several of these environments. Unlike SVG, in the

model learning stage, they approximated reward and termination functions besides the

transition function. In terms of model function, they proposed to use Gated Recurrent

Units (GRU) [25] to alleviate gradient issues. The model learning objective is inspired

by the Model-Based Policy Optimization (MBPO) [9] algorithm, which argues the

detrimental effects of compounding error issues and suggests utilizing short truncated

trajectories for model learning. Although they were able to employ SAC-SVG for

truncated trajectories up to length 10 during policy optimization, the performance

starts diminishing drastically as the trajectory length increases. They have stated that

the highest score, in general, is obtained when the trajectory length is kept to 2, one

higher than the best SVG variant. These empirical results are consistent with our

findings in policy optimization with recurrent model functions that implement GRU

and Long Short Term Memory (LSTM) [26]. They have also pointed out several future

directions, some of which are addressed in this thesis, including the extension of the

SVG algorithm to other model-free algorithms and employing constrained MDPs.

A notable work towards mitigating the gradient divergence during policy optimization

is Directional Derivative Projection Policy Optimization (DDPPO) suggested by Li

et al. [27]. Similar to the SAC-SVG algorithm, they employed a model learning

8

method inspired by MBPO. In contrast, they applied a constraint term to the model

objective that aims to restrict the model Jacobian to avoid divergence in gradients.

Since the optimization of such an objective would require second-order methods as the

objective include Jacobian of the model function, they proposed a finite differences

method for the calculation of the model Jacobian using the directional derivatives

of a second model that is trained with the same experience memory. By controlling

the coefficient of the constraint term in the objective function, they are able to trade

between stable or accurate gradients. Additionally, they put theoretical justification

for their directional derivative estimation method and showed that it converges to the

true derivative of the model. They also provided extensive empirical studies on several

MuJoCo control tasks. Although their results are mostly on par with the baseline

model-based algorithms, they provide a novel technique for constraining the model

Jacobian. Nevertheless, they obtained optimal results on short truncated trajectories,

generally no longer than 3. In contrast, we use truncated trajectories in VG-PPO that

extend up to 64 steps without observing any divergent behavior.

A relatively immature but promising direction for utilizing model information to

improve policy optimization is proposed by Ma et al. [28]. They employed an

attention-based model function that is able to capture time-dependent relations on a

truncated trajectory for predicting the model dynamics. The attention mechanism is

argued to provide "shortcuts"; hence the algorithm is named Model-based Temporal

Shortcuts. Similar to the experiments in this thesis, they provided a test environment in

which relatively long-term action-reward dependencies are present. They showed that

the proposed attention-based model function is able to focus on related actions even

if they are a few steps apart from the reward of interest. Unfortunately, the authors

have not included benchmark scores on baseline environments yet. In our work,

we implemented the proposed model function, but to the best of our understanding,

we have observed that the Markovian dynamics of the environments provide trivial

solutions to the model objective as a state vector contains enough information to

allow for the prediction of the next one. Therefore, we did not extend this approach.

Nevertheless, we believe this is a very promising direction given the success of the

attention mechanism [29] in Natural Language Processing (NLP).

9

Besides VG methods, one of the recently developed paradigms in policy optimization,

inspired by the success of the transformer architectures [29], that utilizes a

transformer-based model function for an autoregressive sequence learning has been

proposed by Chen et al. as Decision Transformers (DT) [30] and by Janner et al [31].

These approaches, although lacking theoretical justification, have shown promising

results on some of the RL benchmarks. There is a strong resemblance between VG

methods and this paradigm as they both perform policy optimization with an objective

that maximizes the value estimation through backpropagation over the truncated

trajectories. In contrast to previously mentioned works, DT is able to optimize the

policy with trajectories of up to 50 steps. We argue that the VG mechanism can

provide a theoretical basis for transformer-based sequence learning approaches, with

transformers being employed as high-capacity baselines for both model and policy

functions.

Another VG-like approach that propagates analytic gradients through truncated

trajectories is Dreamer [7,8] proposed by Hafner et al. Contrary to previous

approaches, Dreamer utilizes the model function to simulate short truncated

trajectories. The emphasis in this work is put on the architecture of the model function

and the latent space representation where the policy optimization is performed.

Dreamer employs a complex recurrent model function that is trained with the samples

drawn from a replay buffer. During policy optimization, they only use simulated

trajectories and argue that the policy optimization on latent space is computationally

more efficient. The policy optimization objective is a hybrid one in Dreamer. It

includes both correlation-based PG objective and VG objective, which they describe

as analytic gradients over the model function without mentioning the name value

gradients. They provided a rich set of experiments on both MuJoCo [13] control

tasks and ATARI [12] environments. In the ablation study, they compared these two

objectives alongside other parameters in the proposed architecture and claimed that the

VG objective does not improve upon the PG objective for most of the environments.

We argue that when relatively long trajectories are used, such as the ones that they

used in the training of Dreamer, the recurrent model function tends to show divergent

gradient behavior. Since this is not the main point of the paper, they did not focus on

10

exploding or vanishing gradient of the model function. Albeit the complexity of the

proposed model architecture and complex training regime, they managed to surpass

state-of-the-art model-free algorithms, which have not been the case for model-based

algorithms until then. In this thesis, we have also observed the benefits of using a

hybrid policy optimization objective, particularly during the early stages of the model

training.

1.2.2 Unitary Recurrent Networks

Policy optimization that passes the gradient through sampled trajectories generates an

almost identical computational graph as of Recurrent Neural Networks (RNN). This

similarity has been the reason why SVG algorithms, including the one we propose

in this thesis, employ model functions that are similar to that of RNNs, commonly a

gated network such as LSTM or GRU. Besides these networks, in order to mitigate

the vanishing or exploding gradient issue, attention mechanisms on time [29] or

constrained models have been suggested. This thesis focuses on the latter approach

that brings restrictions to the network parameters such that the Jacobian of the network

is bounded. One of the ways of achieving this, as proposed by Arjovsky et al.,

is uRNN [32] where the weight matrices of the linear layers are parameterized to

become unitary matrices by applying 7 consecutive norm-preserving transformations

including rotation, reflection, and permutation. In addition, they proposed a parametric

non-linearity called modRELU, a variation of ReLU [33], which initially preserves

the norm of its input while it may slowly reduce the input norm over the course of

the training. In this thesis, our ablation studies indicate modRELU yields the lowest

loss during the model training stage among other norm-preserving non-linearities. In

their experiments, they compared uRNN with LSTM in standard and permuted pixel

MNIST [34] tasks and demonstrated that uRNN converges significantly faster than

LSTM while maintaining most of the gradient norm, albeit the converged accuracy of

LSTM is higher in standard pixel MNIST task.

Despite the simplicity of the parametrization approach suggested in uRNN, Wisdom

et al. [35] showed that after 7 dimensions in the hidden state, the capacity of the

network degrades since there are exactly 7 transformations in the parametrization.

11

Instead, they proposed a more rigorous parametrization that covers the entire set of

unitary matrices; hence the model capacity does not degrade by the increase in the state

dimension. They introduced the Stiefel manifold, a set of k-orthogonal vectors that can

represent all unitary matrices with the same dimension, and suggested using Cayley

transform as parametrization since the Cayley transform maps any vector in euclidean

space to the Stiefel manifold. Hence, they provided an optimization procedure akin to

Riemannian Gradient Descent (RGD) with Cayley Transform as retraction, which is

both full capacity and guaranteed to preserve the orthonormal property of the weight

matrices in the linear layers. They demonstrated the performance of the proposed

approach on MNIST tasks where the proposed version of uRNN surpasses both vanilla

uRNN and LSTM given enough parameters.

Besides parametrization methods that employ Cayley Transform [35]–[37], Casado

[38] additionally proposed matrix exponential for parametrization as simple to

implement and numerically stable alternative to Cayley Transform. Moreover,

Casado introduced a generalized RGD framework and provided a PyTorch [39]

implementations that include the mentioned parametrization techniques, which allows

constrained optimization on manifolds [22]. This framework contains parametrization

techniques for several matrix constraints including the one that is forced by the Stiefel

manifold. We use this framework for the model function implementations in this thesis.

12

2. BACKGROUND

2.1 MARKOV DECISION PROCESS

In the field of reinforcement learning, Markov Decision Processes (MDPs) provide a

mathematical framework for modeling sequential decision-making under uncertainty.

MDPs are used to formalize the problem of an agent attempting to maximize a

weighted sum of numerical rewards by making decisions/actions in a sequence over

time.

In the rest of the thesis, we denote random variables by capital letters and samples

of them or scalar values by lowercase letters. We consider a standard finite horizon

discounted Markov Decision Process (MDP) with a single agent that interacts with an

environment in discrete time steps until the termination state is reached. The MDP

consists of a 7-tuple ⟨S,A, r, p, d, ρ, γ⟩, where S denotes the state space, A denotes

the action space, the function rt = fr(st, at, st+1) denotes the reward function of the

state, action, and next state, the density function p(st+1, rt|S = st, A = at) denotes

the transition distribution, d(.|st, at) denotes a conditional Bernoulli distribution that

determines the end of the episode, ρ(s) denotes the initial state distribution, and the

scalar γ ∈ [0, 1) is the discounting factor. Agent interactions are determined by

the policy density function π(at|st; θ) parameterized by θ that returns a distribution

over the action space A for every state. The finite return of a state, following a

policy π(.|s), is a random variable Gπ(St) =
∑T

i=t+1 γ
iri where ri’s are the sampled

scalar rewards on a trajectory that ends with a terminal state, which is determined

by d(.|st, at), and the superscript on the return G denotes the policy under which the

rewards are sampled. Additionally, we use pπ(st+1|st), pπ(τ), and dπ(s) to denote

policy aware transition, trajectory, and stationary state distributions respectively where

τ represent a sequence of states, actions, and rewards τ = (s0, a0, r1, s1, a1, . . .).

Similarly, the return of a trajectory is denoted by Gπ(τ) . The conditional expectation

under the policy, termination and transition distributions describes the value V π(st) =

13

Eat∼π,st+1∼p,dt∼d

[
Gπ(st)

∣∣S = st]. The objective is to maximize the expected state

value over the initial state distribution J(θ) = Es0∼ρ

[
V π(s0)

]
.

2.2 POLICY GRADIENTS

Policy Gradient (PG) is a framework in Reinforcement Learning (RL) that has seen

significant development in recent years. It is a technique for finding an optimal policy,

which is a set of rules that an agent must follow in order to maximize its reward.

Unlike other RL algorithms, PG algorithms do not require an explicit model of the

environment and can be used in a variety of different scenarios. The core idea behind

policy gradient is to use a gradient-based optimization algorithm to update a policy in

order to maximize rewards. This is done by taking the derivative of a value estimation

with respect to the parameters of the policy and using gradient ascent to update the

policy parameters. This process is repeated until an optimal policy is found.

2.2.1 REINFORCE

The simplest value estimation is Monte Carlo (MC) based estimation that is employed

in REINFORCE [3]. The PG objective aims to maximize this value estimate with

respect to policy parameters. The objective is J(θ) = Eτ∼pπ(τ ;θ)

[
Gπ(τ)

]
where θ is

the parameters of the policy π. We take the derivative of the objective function∇θJ(θ)

with respect to the policy parameters θ in order to apply gradient ascent as shown in

Equation (2.1).

∇θJ(θ) = ∇θEτ∼pπ(τ ;θ)

[
Gπ(τ)

]
= ∇θ

∫
τ

pπ(τ ; θ)Gπ(τ)dτ

=

∫
τ

pπ(τ ; θ)∇θ log p
π(τ ; θ)Gπ(τ)dτ

= Eτ∼pπ(τ ;θ)

[
∇θ log

(T∏
t=0

p(st+1|st, at)π(at|st; θ)
)
Gπ(τ)

]

= Eτ∼pπ(τ ;θ)

[(T∑
t=0

∇θ log π(at|st; θ)
)
Gπ(τ)

]
(2.1)

14

Equation (2.1) provides a Monte Carlo estimation for the policy gradients. Since the

gradient estimate does not include any term related to the transition distribution, it is a

model-free estimate. However, although being a bias-free estimate, the variance in this

estimate is significantly large. One simple modification towards reducing the variance

in the estimate is to exploit causality. It suggests that the rewards only depend on the

actions taken before them.

∇θJ(θ) = Eτ∼pπ(τ ;θ)

[(T∑
t=0

∇θ log π(at|st; θ)
)(T∑

t=1

rtγ
t

)]

=
T∑
t=0

Eτ∼pπ(τ ;θ)

[(
∇θ log π(at|st; θ)

)(T∑
k=t+1

rkγ
k−t−1

)]

=
T∑
t=0

Eτ0:t∼pπ(τ ;θ)Eτt+1:T∼pπ(τ ;θ)

[(
∇θ log π(at|st; θ)

)(T∑
k=t+1

rkγ
k−t−1

)]

=
T∑
t=0

Eτ0:t∼pπ(τ ;θ)

[(
∇θ log π(at|st; θ)

)
Eτt+1:T∼pπ(τ ;θ)

[T∑
k=t+1

rkγ
k−t−1

]]

=
T∑
t=0

Eτ0:t∼pπ(τ ;θ)

[
∇θ log π(at|st; θ)V π(st)

]
(2.2)

The gradient estimate in Equation (2.2) describes the Policy Gradient with value

function. In this equation, τk:n denotes a chunk of a trajectory starting from time step

k and ending at time step n.

2.2.2 Actor Critic

The REINFORCE algorithm does not use value approximation; hence it employs

MC-based value estimation. Alternatively, we can use the TD(λ) based value

estimation in the PG objective in Equation (2.2). This would require value

approximation if the parameter λ is not set to 1. We call this set of PG algorithms

Actor-Critic (AC) algorithms. Usually, we use another neural network (NN) for the

value approximation [2].

One of the value estimates preferred in AC algorithms is the advantage estimate. It is a

measure of how much better or worse a given action is compared to the average action

value in a state. It is denoted by Aπ(st, at) = Qπ(st, at) − V π(st). The advantage

15

estimate is equal to the expectation of TD error δt = rt + γV π(st+1) − V π(st) under

the transition distribution.

Aπ(st, at) = Est+1∼p(.|st,at)[δt]

= Est+1∼p(.|st,at)[rt + γV π(st+1)]− V π(st)

= Qπ(st, at)− V π(st) (2.3)

Asynchronous Advantage Actor Critic (A3C) [6] and its synchronous counterpart

(A2C) employs advantage estimate in the Actor Critic framework. Furthermore, in

order to improve the stability and the training speed of the algorithm, A3C utilizes

parallel working environments that gather chunks of trajectories called rollout.

In this thesis, we use A2C both as a baseline in the comparisons and as a reference

algorithm for implementing VG due to its simplicity. A2C employs n-step estimation

for the advantage function Âπ
n(st) = V π(st+n) − γnV π(st+n) +

∑n
i=t+1 γ

i−t−1ri.

Similarly, the target for the state-value approximation is n-step and is calculated by

V̂ (st) = Âπ
n(st) + V π(st) where V̂ π(s) denotes the target estimation.

Algorithm 1 Advantage Actor Critic (A2C) Algorithm
Initialize actor parameters θ and critic parameters ϕ
Initialize K environments {E1, . . . , Ek} in parallel
Initialize total time step T and step size n
for t ∈ [0,floor(T/K)] ; t← t+ n do

for each environment Ei do
Sample n-step rollout τ it:t+n from environment Ei with π(a|s; θ)
Initialize value target estimate V̂ π

ϕ (st) = vϕ(st+n)
for each sk, ak, rk, sk+1 ∈ reversed(τ it:t+n) do

V̂ π
ϕ (st)← γV̂ π

ϕ (st) + rk

Âπ
ϕ(sk)← V̂ π

ϕ (st)− vϕ(sk)

Calculate ∇̂θ and ∇̂ϕ as in Equations (2.5) and (2.4)
Store the calculated gradients∇θ and ∇ϕ

end for
end for
Update the parameters θ and ϕ using the mean of the stored gradients

end for

A2C implements two neural networks, one for the actor-network µ(s; θ) that

parameterize the policy distribution, which is denoted by πθ(a|s), and the other one

16

is for the critic network vϕ(s) that approximates the state-value function. The target

value that replaces its state values by the approximation of the critic network is denoted

by V̂ π
ϕ (s).

∇̂ϕ = Es∼dπ(s)

[
(vϕ(s)− V̂ π

ϕ (s))∇ϕvϕ(s)
]

(2.4)

∇̂θ = Es∼dπ(s),a∼πθ(a|s)

[
∇θ log πθ(a|s)Âπ

ϕ(s)
]

(2.5)

Equations, (2.4) and (2.5) give gradient estimates based on the Policy Gradient theorem

to update the critic and actor networks respectively.

Algorithm 1 shows the pseudo-code for the A2C algorithm. Increasing the number

of parallel environments improves the gradient estimates at Equations (2.4) and (2.5)

by providing more gradient samples to the Monte Carlo sampling estimation. The

practice of employing parallel working environments has become a common practice

for on-policy algorithms due to its impact on performance. In the implementations of

this thesis, we take advantage of synchronously running parallel environment workers.

2.2.3 Generalized Advantage Estimation

In Actor-Critic algorithms, we can use a variety of value estimations both in the value

approximation objective as the value target or in the policy optimization. Generalized

Advantage Estimation (GAE) [4] combines Monte Carlo sampling and temporal

difference (TD) learning to estimate an advantage function akin to TD(λ). It combines

the TD error terms δt for n-steps by an exponentially decaying weighting scheme. This

allows it to have a control over the bias and variance in the advantage estimates and

trade between them to possibly provide more stable and accurate learning.

The advantage estimate of GAE is denoted by GAEλ,γ(s). In this subsection, for the

clarity of the notation, we omit the policy π from the value estimators. GAE returns a

weighted sum of all the k-step advantage estimates Âk(s).

Âk(st) = γkV (sk+t) +
k∑

i=t+1

γi−t−1ri − V (st)

17

= γkV (sk+t) +
k∑

i=t+2

γi−t−1ri − V (st+1) + γV (st+1) + rt+1 − V (st)

= V (sk+t) +
k∑

i=t+2

ri − V (st+1) + δt

=
k−1∑
i=0

γiδt+i (2.6)

The k-step advantage can be written as the sum of TD errors at every step up to k as

shown in Equation (2.6). Hence, we can form a GAE estimate using TD errors.

GAEλ,γ(st) = (1− λ)
∞∑
k=1

λk−1Âk(st)

= (1− λ)
∞∑
k=1

λk−1

(k−1∑
i=0

γiδt+i

)
= (1− λ)

∞∑
k=0

λkγkδt+k(1 + λ+ λ2 + · · ·+ λn−k−1)

= (1− λ)
∞∑
k=0

λkγkδt+k
1

1− λ

=
∞∑
k=0

λkγkδt+k (2.7)

GAE has been shown to improve the performance of Actor-Critic algorithms in a

variety of tasks, including continuous control and Atari [12] game playing. It has also

been used in combination with other methods, such as trust region optimization [4,40],

to further improve the performance of Actor-Critic algorithms. Therefore, we use GAE

as the advantage estimation in our implementations, as it is compatible with the VG

objective and provides a strong baseline.

2.3 PROXIMAL POLICY OPTIMIZATION

On-policy and model-free RL algorithms tend to require a large number of samples due

to the instabilities in the learning and high variance in the policy gradient estimator.

One of the key drawbacks of on-policy algorithms such as A2C is that the experience

used in the parameter updates can not be reused for another update since the samples

18

become an off-policy experience. However, the optimization steps are relatively small,

so the change in the policy parameters only slightly makes the samples used in the

optimization step off-policy experience.

The Trust Region Policy Optimization (TRPO) algorithm, the predecessor of

PPO, proposes a constrained optimization framework such that the updated policy

parameters stay close to the policy parameters used to gather the experience. This

way, TRPO aims to reuse the same experience for multiple policy updates before the

final policy is off enough from the policy that gathers the experience. TRPO makes

use of a powerful equation [41] that enables expressing the expected value of a policy

in terms of another one using the advantage function.

Eτ∼pπ̂(τ)

[∞∑
k=0

γkAπ(sk, ak)

]
= Eτ∼pπ̂(τ)

[∞∑
k=0

γk
(
γV (sk+1) + rk+1 − V (sk)

)]
= Eτ∼pπ̂(τ)

[
− V (s0) +

∞∑
k=0

γkrk+1

]
= −Eτ∼pπ̂(τ)

[
V (s0)

]
+ Eτ∼pπ̂(τ)

[∞∑
k=0

γkrk+1

]
= −J(θ) + J(θ̂) (2.8)

The expression in Equation (2.8) formulates a way for calculating the expected value

J(θ̂) of policy π̂ using the expected value of another policy π while using the

trajectories of π̂. Assume the parameter θ̂ is a result after an update performed on the

parameter θ. In order to take advantage of Equation (2.8) for another policy update on

the parameters θ̂ using the previous experience, the trajectories under the expectation

need to be distributed by π instead of π̂. TRPO relaxes Equation (2.8) by providing

an approximation so that the following policy updates are allowed to use previous

experience.

J(θ̂) = Eτ∼pπ̂(τ)

[∞∑
k=0

γkAπ(sk, ak)

]
+ J(θ)

= Es∼dπ̂(s)

[
Ea∼π̂(a|s)

[
Aπ(s, a)

]]
+ J(θ)

19

≈ Es∼dπ(s)

[
Ea∼π̂(a|s)

[
Aπ(s, a)

]]
+ J(θ) (2.9)

The expression in Equation (2.9) is a first-order approximation to the one in Equation

(2.8) as shown by [41] Kakade et al. Hence, the approximation holds as long as the two

policies, π̂ and π, are close. Following this, TRPO formalizes a constraint optimization

where the objective is to maximize the expected value of a policy using the samples

of its previous version. The Kullback–Leibler (KL) divergence term in the constraint

prevents significant changes between the two policies.

In order to fully utilize the samples from an earlier policy π, TRPO employs an

importance sampling term that enables replacing π̂ by π under the expectation.

Combining these, TRPO proposes a policy optimization problem given below.

maximize
θ

Es∼dπ(s),a∼π(a|s)

[
π̂(a|s; θ)
π(a|s)

Âπ(s)

]
subject to Es∼dπ(s)

[
DKL

(
π̂(.|s)

∥∥∥π(.|s; θ))] ≤ ϵ (2.10)

The optimization objective in Expression (2.10) forces the parameter update to stay

in the on-policy region after optimization steps. The ϵ parameter determines the

closeness of the two policies. Relaxing the constraint allows aggressive policy

updates that maximize the advantage estimate Âπ while tightening it allows for

accurate approximation in the value estimation. Although the above optimization

problem in Expression (2.10) provides a rigorous and analytical policy optimization

that reuses past experience, in practice, the non-linear constraint optimization

problem is replaced by an unconstrained problem where the constraint term is

introduced to the objective with the coefficient β, i.e., Es∼dπ(s),a∼π(a|s)

[
π̂(a|s;θ)
π(a|s) Â

π(s)−

β
[
DKL

(
π̂(.|s)

∥∥∥π(.|s; θ))]]. Instead, PPO suggests an alternative surrogate objective

that is simple to implement and provides easily tuneable clipping parameter ϵ shown

in Equation (2.11).

LCLIP(θ) = Es∼dπ(s),a∼π(a|s)

[
min

(
rθ(s, a)Â

π(s), clip(rθ(s, a), 1− ϵ, 1 + ϵ)Âπ(s)
)]

(2.11)

20

The clip objective in Equation (2.11) eliminates the gradients that are more off than

allowed by the ratio rθ(s, a) =
π̂(s,a;θ)
π(s,a)

, which also stands as the importance sampling

term in the policy optimization objective. Here ϵ determines the range of the policy

distribution ratio in which gradients are not cut off by the minimum and the clip

operations during the backward pass. Overall, PPO promises policy optimization with

reusable experience, hence improving the sample efficiency and stability.

Algorithm 2 Proximal Policy Optimization (PPO) Algorithm
Initialize actor parameters θ and critic parameters ϕ
Initialize K environments {E1, . . . , Ek} in parallel
Initialize total time step T , number of epochs E, and step size n
for t ∈ [0,floor(T/K)]; t← t+ n do

Initialize rollout store T and advantage estimate store A
for each environment Ei do

Sample and store n-step rollout T← T ∪ τ it:t+n ∼ pπ̂(τ)

Calculate and store advantage estimates A← Âπ

end for
for each epoch ∈ [1, E] do

Shuffle T
for each batch of (sk, ak, rk+1, sk+1) ∈ T do

Calculate PG estimate using A and T according to (2.11)
Calculate ∂

∂ϕ
of the value loss with the batch

Update the parameters θ and ϕ
end for

end for
end for

In PPO, similar to A2C there are multiple parallel environment workers and actor and

critic networks. The objective of the critic is the same, although the advantage estimate

that is used in the objective may differ. The key point of PPO is the multi-epoch usage

of the same experience, which includes state-action transitions, rewards, and advantage

estimates of the experience collecting policy. If the number of epochs is set to 1, PPO

becomes equivalent to A2C since there will be no clipping applied and the importance

sampling ratio rθ is equal to 1. In practice, the number of epochs is assigned a

value between 5 to 10, depending on the task. In terms of performance in common

RL benchmarks and simplicity, PPO stands as one of the most prominent model-free

approaches. Hence, we implement the VG objective to combine the sample reusability

feature of PPO with the low variance policy gradient estimate of VGs. The challenge

21

in combining PPO with VG objective is that PPO prefers long rollout lengths, and VG

objective fails in long trajectories. The model function proposed in this thesis makes

it possible to implement the VG objective by enabling VG estimates on long horizons.

The details of that algorithm are discussed in the next chapter.

2.4 VALUE GRADIENTS

The policy gradient estimate in PG methods relies on the correlation between actions

and rewards. This estimate, although being model-free, as shown in Equation (2.1)

tends to have large variance. Although value approximation provides a trade between

variance and bias in the gradient estimate by n step bootstrapping, in practice, AC

algorithms favor large values of n; hence the variance of the PG estimate remains

large. The alternative gradient estimate to that of PG methods is the VG estimate,

which relies on the functional relation instead of likelihood or correlation. VG methods

link the rewards and value estimates to the past actions along a truncated trajectory, i.e.,

n-step rollouts. In order to achieve this, VG methods combine differentiable model and

reward functions to form a computational graph (CG) over a truncated trajectory. This

functional relation allows PG to produce a low variance gradient estimate.

Similar to PG, the objective in VG is the maximization of expected value estimates with

respect to policy parameters. Unlike the PG approach, VG utilizes reparameterization

to form the CG on sampled truncated trajectories as suggested in SVG [16].

2.4.1 Reparameterization

Derivative operation through samples of a parametric distribution requires additional

steps. One of the approaches proposed by Williams [3] is log-trick, which is used in

PG methods shown in equation (2.12).

∇θEp(y|x;θ)

[
f(y)

∣∣X = x
]
= Ep(y|x;θ)

[
∇θ log p(y|x; θ)f(y)

∣∣X = x
]

(2.12)

Alternatively, reparameterization separates deterministic parameters from the stochas-

tic parts of a distribution that does not depend on the parameters. Equation (2.13)

shows its application on the derivative of an expectation.

22

∇θEp(y|x;θ)

[
f(y)

∣∣X = x
]
= Eρ(ϵ)

[
∇θf

(
h(x, ϵ)

)∣∣X = x
]

(2.13)

Here, the samples of the distribution p(y|x; θ) are written in terms of a deterministic

function y = h(x, ϵ), which takes the input x and parameter-independent sample ϵ.

This allows the derivative operation to easily pass over the expectation.

The choice of the deterministic function h depends on the distribution. In this thesis,

we reparameterize parametric Normal distributions s ∼ N (µ, σ2) by the parameters

µ and σ as s = (µ + ϵ)σ, where ϵ ∼ N (0, 1) [42]. We use straight-through [43]

reparameterization for the categorical distribution. In the following chapters, we

present a comparison of the two approaches that we discussed in this subsection for

simple gradient estimation.

2.4.2 Stochastic Value Gradient

Value gradient objectives utilize the differentiable model and reward functions to

provide policy gradient estimates on a truncated trajectory. This mandates the use

of deterministic functions in which the computational graph is built over the outputs of

the model function. If the model is not exact but approximated, then iteratively calling

the deterministic model function may cause the approximation errors to compound

over time, which leads to divergence and numerical instabilities.

Instead of a deterministic approach, SVG utilizes reparameterization to build a

computation graph on the sampled trajectories, where at each step the approximate

model is given sampled states instead of the previous prediction, which does not cause

a compounding error problem.

∇θV (st) = ∇θEp(st+1|st,at)π(at|st)
[
rt+1 + γV (st+1)

]
= ∇θEp(ϵs,ϵa)

[
r(st, f(st, ϵs, µ(st, ϵa)), µ(st, ϵa)) + γV (f(st, ϵs, µ(s, ϵa))

]
= Ep(ϵs,ϵa)

[
∇θr(st, s̃t+1, ãt) +∇θγV (s̃t+1)

]
= Ep(ϵs,ϵa)

[
Jµθ (ãt)

(
∇rt

ãt
+ Jfa(s̃t+1)

(
∇rt

s̃t+1
+ γ∇Vt+1

st+1

))]
(2.14)

23

Equation (2.14) provides the gradient of the 1-step value estimation. The

reparametrization is applied by the model function f(st, at, ϵs) and to the deterministic

policy function µ(st, ϵa). The parameter-independent parts within the transition and

the policy distributions that describe the noise are denoted by ϵs and ϵa respectively.

Hence, the sample next state st+1 and the sample action at are rewritten by the model

and deterministic policy functions as s̃t+1 = f(st, at, ϵs) and ãt = µ(st, ϵa). For the

clarity of the notation, we replace functions f and µ with s̃ and ã. The term Jfx(y)

denotes the Jacobian of the function f at y with respect to x, similarly,∇g
x denotes the

gradient of g w.r.t x where g is a scalar function.

In policy optimization, the sampled transition contains sample actions, rewards, and

states. Hence, the noise terms ϵs and ϵa need to be inferred using the sample transition.

Following the Bayesian approach provided in SVG [16], we modify the value gradient

term as in Equation (2.15).

Ep(ϵs,ϵa)Ep(s̃t+1,ãt|ϵs,ϵa,st)

[
r(st, s̃t+1, ãt) + γV (s̃t+1)

]
=

Ep(st+1,at|st)Ep(ϵs,ϵa|st+1,at,st)

[
r(st, s̃t+1, ãt) + γV (s̃t+1)

]
(2.15)

Instead of sampling the noise values ϵs and ϵa from a noise distribution, we use the

inferred noise values in the deterministic functions f and r.

In policy optimization with multi-step value estimation, the gradient of the value

functions propagates backwardly through the computational graph formed over the

sampled transition. The propagating gradient is denoted by ∇Vt
st and Equation (2.16)

shows its calculation while omitting the distributions under the expectation for clarity.

∇Vt
st =

(
Jµs (s̃t)Jfa(s̃t, ãt) + Jfs (s̃t, ãt)

)(
∇r

st+1
+ γ∇Vt+1

s̃t+1

)
+
(
∇r

st + Jµs (s̃t)∇r
ãt

)
(2.16)

SVG combines these to form SVG(∞) and SVG(H), where H denotes the length of

trajectory in which the value is estimated. SVG(∞) employs MC value estimation over

finite trajectories while SVG(H) truncates the value estimation with the approximate

value at the H’th step.

24

The approximate model function is trained with the negative log likelihood loss

function by the samples from a replay buffer that keeps the transitions collected during

the training. The value approximation, critic, is employed for SVG variants other

than SVG(∞), which replaces the true state value in Equations (2.16) and (2.14).

Although it is possible to formulate SVG as an off-policy algorithm [16,21], we focus

on on-policy SVG algorithms in this thesis.

Following is a pseudo-code for SVG(H) algorithm. We initialize a critic function

denoted by vϕ, an approximate model function fξ, and the deterministic policy function

µθ that parameterizes the policy distribution π, which is used in experience collection.

In a loop, we sample n-step rollouts and store them in a replay buffer. Next, we update

the model function fξ with random samples from the buffer. Finally, we update the

policy and the critic functions with the latest n-step rollouts.

Algorithm 3 SVG(H) Algorithm
Initialize µθ and fξ functions
Initialize Critic vϕ
Initialize a replay buffer D
Initialize K environments {E1, . . . , Ek} in parallel
Initialize total time step T and step size n
for t ∈ [0,floor(T/K)]; t← t+ n do

for each environment Ei do
Sample and store n-step rollout D← D ∪ τ it:t+n ∼ pπ̂(τ)

end for
Update the model function fξ with samples from D
Initialize policy gradient accumulator∇θ ← 0
Initialize value target V̂ ← vξ(st+n+1)
Initialize∇Vt+n+1

st+n+1
← ∇sV (st+n+1)

for each (sk, ak, rk+1, sk+1) ∈ reversed(τt:t+n) do
V̂ ← rk+1 + γV̂
Infer ϵsk and ϵak
Calculate∇Vk

sk
according to Equation (2.16)

Calculate∇Vk
θ ← ∇θV (sk) according to Equation (2.14)

Accumulate policy gradient∇θ ← ∇Vk
θ + γ∇θ

end for
Update the value function vξ with the target value V̂
Update policy function µθ with accumulated gradients∇θ

end for

The SVG algorithm provides a sample-based application of VG objective for varying

trajectory lengths in the value estimation.

25

26

3. METHOD

Value Gradient (VG) algorithms utilize the model function to connect actions, rewards,

and state values in a single computational graph, similar to that of Recurrent

Neural Networks (RNN). This graph enables VG methods to perform direct value

maximization given that the rewards and the values within the value estimate are in

the graph. The model function guides the gradient of the value of interest through this

graph backward in time. If the spectral radius of the Jacobian of the reparameterized

policy aware transition function gθ,ϕ(st, ϵs, ϵa) → s̃t+1 with respect to s is lower than

1 for all states, then the gradients passing through the computational graph vanish.

Conversely, if the spectral radius is larger than 1 for all states, the gradients explode. In

practice, when the transition function is modeled as a fully connected neural network,

we observe divergence or converging to 0 issues, although the Jacobian matrices of the

function g have mixed spectral radiuses.

3.1 PARAMETERIZATION

The policy-aware transition function g is composed with itself multiple times to

reparameterize a sample trajectory gn(st, ε) → st+n. The function composition

by itself is represented by gn(.) where n denotes the number of function g in the

composition. For the clarity of the notation, we denote the set of state and action noise

parameters on a trajectory by ε = (ϵs1 , . . . , ϵan). The derivative operator transforms

function composition to the multiplication of Jacobian matrices. Therefore, Jacobian

of the composite function gn(.) is the product of Jacobian matrices of function g at

each state on the trajectory Jgns (st, ε) =
∏n

k=1 Jgs(st+k, ϵst+k
, ϵat+k

).

If the Jacobian matrices belong to a set of bounded and non-zero matrices and they

are closed under multiplication, the gradient passing through the finite composition of

gn(.) does not diverge nor vanish. One such set of matrices is unitary matrices, which

are composed of k orthonormal vectors of size k. A model function composed of linear

27

layers and non-linearities in between, such as the neural networks that we use in Policy

Gradient (PG) algorithms, may have a unitary Jacobian matrix if the weight matrices

are unitary and the non-linearity preserves the norm of the gradient passing through, e.g

absolute value function. However, the model aware transition function g is composed

of two functions, µ and f , that is Jgs(s, ϵs, ϵa) = Jfs (s, ã, ϵs) + Jµs (s, ϵa)J
f
ã(s, ã, ϵs).

Although the Jacobian of the policy-aware transition function with respect to input

state Jgs is a square matrix, the Jacobian matrices of the policy function Jµs and the

transition function Jfã are not necessarily square matrices, if |A| ̸= |S|. Hence we

extend the set of unitary matrices by including a set of orthonormal k vectors of size

larger than k. Stiefel manifold is the set of such matrices denoted by St(n, k), such

that A ∈ St(n, k) : A∗A = Ik where n is the dimension of the orthonormal vectors

and k ≤ n is the number of orthonormal vectors in A.

In order to represent the Jacobian matrix of a function on St(n, k), the function must be

an injective mapping. . In the case where |A| < |S|, the Jacobian matrix of the policy

function can not be in the manifold Jµs ̸∈ St(n, k), even though Jfã ∈ St(n, k). Hence,

in our implementation we ignore the contribution of JµsJ
f
ã to Jgs . Subjectivity constraint

allows model function f to map states into a latent space with higher dimensions as

this is often the case for Neural Networks (NN). Hence, the increase in dimension is

allowed within the layers of the model function.

max Est,at,st+1∈D

[
log p

(
st+1; f(st, at, (ξi, . . . , ξL))

)]
subject to ξi ⊂ St(ni, ki) ∀i ∈ (1, . . . , L) (3.1)

The optimization problem in expression (3.1) describes the optimization of the model

function with L layers. The state, action, and next state are sampled from a

replay buffer D. The set of ξi’s are the weight matrices of the linear layers in the

model function f . The objective is to maximize the log-likelihood of the transition

distribution p, usually, a Gaussian distribution, parameterized by f for the next state

samples. The constraint only allows weights that are in St(n, k) for the layers of the

28

model function. However, this optimization problem is difficult to solve with high

dimensional non-linear functions due to the constraints.

3.1.1 RIEMANNIAN GRADIENT DESCENT

The challenge in Gradient Descent (GD) on a manifold M is that the vectors in the

tangent space of the manifold ∇ ∈ TpM may lead outside of the manifold. In order

to map the points in the neighboring of a point p ∈ M along the direction in a vector

of tangent space ∇ back to manifold, we describe a mapping ϕ : TpM→M, where

the first order approximation of ϕ is called retraction. Moving straight on the manifold

according to ϕ makes a geodesic on the manifold γp,∇(t) where t ∈ [0, 1]. A geodesic

stays on the manifold while following the direction of ∇ starting at point p and it

satisfies γp,∇(0) = p. Instead of following the gradient ∇, Riemannian Gradient

Descent (RGD) follows the geodesic at point p ∈ M. There exists a unique geodesic

for any point inM. Hence, the RGD update rule is ξt+1 = ϕ(−∇ξLf (st, at, ξ)) where

Lf is the loss function. In order to use RGD in this objective the mapping ϕ must be a

diffeomorphism.

Instead of mapping the function gradient back to the manifold, we may re formalize the

constraint optimization problem with parametrization of the matrices from Euclidean

space. The new parameter matrix ξ ∈ Rn is put on the manifold by submersion Φ :

Rn →M and given to the objective function. Hence, the new optimization objective

is unconstrained in Euclidean space.

max f(ξ) → max (f ◦ Φ)(ξ)

s.t ξ ∈M s.t ξ ∈ Rn (3.2)

The original Riemannian optimization is equivalent to the one that we obtain after

parametrization. The parameterization, as shown by Casado [38], does not change

the optimization problem by adding additional saddle or locally optimal points. For

the sake of simplicity, we explain the parametrization technique employed in this

thesis with special orthogonal group SO(n), which is a subset of the Stiefel manifold

29

where the matrices are unitary. The parametrization that we will describe can be easily

extended for the Stiefel manifold.

We use matrix exponential function exp(A) = I+ A
1!
+ A2

2!
+. . . as the submersion from

skew matrices to orthogonal matrices. Here, the exp(A) maps skew square matrices,

which satisfies AT = −A, to SO(n).

AT + A = 0

exp(AT + A) = exp(0)

exp(A)T exp(A) = I (3.3)

In Equation (3.3), the matrix exponential of a skew matrix A satisfies the orthogonality

property of SO(n). We applied a trivial parametrization to map matrices from

Euclidean space to the space of skew matrices. Let X ∈ Rn×n, skew(X) = X−XT =

A would satisfies the skewness property. Combining the mappings exp(A) and

skew(X), we obtain submersion Φ(X) : Rn×n → SO(n) = (exp ◦skew)(X) The

new optimization problem is given below.

max Est,at,st+1∈D

[
log p

(
st+1; f(st, at, (Φ(ξi), . . . ,Φ(ξL)))

)]
(3.4)

Both exp(A) and skew(X) are differentiable functions, but exp(A) is computationally

involved. Therefore, during the policy optimization phase, we map Euclidean

parameters ξ to St(n, k) once and reuse them throughout the trajectory on which the

VG objective is built.

3.1.2 Non-Linearity

The unitary weight parametrization allows an affine layer to preserve the norm of the

gradient passing through it. Let, g(x;W, b) = Wx + b be an affine layer. A function

g satisfies the gradient norm preserving property if ∥Jgx(x)∇∥2 = ∥∇∥2. The explicit

form of the inner product∇TJgx(x)TJgx(x)∇ = ∇T∇ indicates when Jgx ∈ St(n, k) the

affine layer g satisfies the norm preserving property.

30

Similarly, for non-linearities, the above-mentioned condition must be met in order to

obtain a model function that does not lead to gradient divergence or vanishing. One

of the element-wise operations that satisfy the condition is the absolute value function

h(x) : R → R+. The Jacobian of the element-wise function h is a diagonal matrix

where the diagonal entries are either 1 or -1. Hence, the square of the Jacobian matrix is

the Identity matrix in the set SO(n). However, in practice, the absolute value function

leads to poor performance, and we did not use it in our experiments.

An alternative parametric non-linearity, modReLU, is proposed by Arjovsky et al [32]

that slightly reduces the gradient norm but does not hinder the model performance.

σ(x; b) =

{
(|x|+ b) x

|x| if |x|+ b ≥ 0

0 otherwise
(3.5)

Equation (3.5) describes modReLU with a learnable parameter b. In our experiments,

we use modReLU in the model function extensively.

3.2 VALUE GRADIENT ON STIEFEL MANIFOLD

In the previous section, we introduced a model function f that does not lead to

exploding or vanishing gradient issues. We combine this model function with the VG

algorithm on long trajectories and show that it does not allow gradient divergence nor

vanishing.

The value estimate contains intermediate rewards on the trajectory and the state value

of the final value approximation. At every step, these terms additively contribute to

the backward propagating gradient ∇Vt
st . The Jacobian matrix of the policy-aware

transition function Jgs is the only multiplicative term in the per-step evaluation of ∇Vt
st .

Since Jgs is able to preserve the gradient norm when the weight matrices of the affine

layer in the model function lie on Stiefel manifold, the propagating gradient ∇Vt
st does

not exponentially shrink nor explode.

We ignored the path on the computational graph of the policy-aware model function g

that passes through policy function µ(st) to state st due to the injectivity requirements

of the affine layers whose weights lie on St(n, k). Although this leads to an

31

approximation of the original gradient estimate, which include the contribution of the

policy function to state value gradient ∇Vt
st , we observed that this term tends to vanish

if the policy function is several layers deep. Moreover, removing the path pulls out

the constraints on the policy function and allows any neural networks that could be

employed in Policy Gradient algorithms.

Generalized Advantage Estimate: We use GAE as our value estimation in the

proposed VG algorithms. GAE provides a control for the impact of two variance

reduction methods with a parameter λ ∈ [0, 1]. Small values of λ would weigh more

on value approximation, while values that are close to 1 weigh VG objective more than

value approximation. The second parameter in GAE is the truncated trajectory length

n, which determines the length of the computational graph of the VG objective.

Combining the proposed model function and the value estimation, we describe the

propagating gradient ∇GAEt
st and the policy gradient ∇t

θ in the policy optimization in

Equation (3.6) and (3.7) respectively.

∇GAEt
st = Jfs (s̃t, ãt)

(
∇δt

s̃t+1
+ γ∇GAEt+1

s̃t+1

)
+∇δt

s̃t
(3.6)

∇t
θ = Jµθ (st+1)

(
∇δt

ãt
+ Jfã(s̃t, ãt)

(
∇δt

s̃t+1
+ γ∇GAEt+1

s̃t+1

))
(3.7)

Latent Space: It is possible to build a model function on a latent space where the

encoder can be any network architecture. The propagating gradient ∇GAEt
st is not

affected by the encoder network as long as the state input s of the model f(s, a, ϵs) lies

on the latent space induced by the encoder network. This allows us to use complex

encoders depending on the task. However, if the reward function depends on the

environment state, which is the case if we do not train an approximate reward function

that depends on the latent state, we need to make sure that the encoder is injective and

its inverse is differentiable.

Reparametrization: We apply reparameterization to policy and transition distribu-

tions. Depending on the action space of the environment we either use Gaussian-based

[42] ã = µa+σaϵa or straight-through [43] ã = µa+sg(a−µa) reparametrization in the

32

policy distribution where sg is a stop gradient function with zero Jacobian Jsg
x (x) = 0.

The same approach also holds for the transition distribution. However, in the model

function, we need to make sure that reparameterization does not change the norm

of the gradient. The Jacobian matrix of the straight-through reparameterization is

the identity matrix; hence it does not affect the gradient norm. In Gaussian based

reparametrization, if the Gaussian parameters µs and σs both depend on s, we would

obtain a Jacobian matrix Jfs = Jµs
s + ϵsJσs

s that may change the gradient norm. Instead,

we model σs as a parametric function that does not depend on s; hence σs does not

contribute to the Jacobian matrix of f . The use of state-independent variance has been

suggested for policy distribution in a previous work [40]. We observed that the choice

of state-independent variance does not affect the performance of the model function.

3.3 VALUE GRADIENT PROXIMAL POLICY OPTIMIZATION

In this section, we describe the implementation of VG to Proximal Policy Optimization

(PPO), which is one of the most prominent model-free on-policy algorithms due to its

effective usage of on-policy experience. In order to take advantage of the experience

and reuse it multiple times, PPO relies on long truncated trajectories. Once the

agents collect the truncated trajectories the trajectory data is used in policy and value

optimizations in multiple epochs, akin to supervised learning. It is often the case that

the advantage estimate in PPO is built over long trajectories in which the parameter

λ that determines the contribution of the future TD errors δ to the value estimation,

is chosen as close to 1. Therefore, a similar value estimate with the VG objective

requires a computational graph over long trajectories. Due to gradient divergence

issues, applying the VG objective with an unconstrained model function is implausible.

VG-PPO aims to address the difficulty that arises from the usage of very long

trajectories by providing a non-divergent and norm-preserving model function as

described in the previous sections. The combined algorithm benefits from the low

variance gradient estimator of VG methods and efficient on-policy data usage of PPO.

Modifications: Once the trajectory data is collected, PPO calculates the advantage

of the states in the trajectories. In our implementation, we employed GAE instead of

n-step value estimation. The policy optimization step uniformly samples the advantage

33

estimate Ât and transition tuple (st, at, st+1, rt, dt). However, in order to form a

computation graph, the VG objective expects a truncated trajectory. Therefore, we

instead sample consecutive trajectory chunks of size h : h ≤ n during the policy

optimization. However, in PPO, the advantage estimate Ân is precalculated with the

values of the data collecting policy, which is the same policy before the parameter

updates. Since the VG objective requires a computational graph over the sampled

trajectories at every update step, the advantage estimate must be recalculated by

the value function of the data-collecting policy. Hence, we employ another value

function V data that is used to recalculate the advantage estimate Âπ before every policy

optimization step. The value function V data is reassigned with the updated parameters

before the policy optimization.

Algorithm 4 VG-PPO Algorithm
Initialize actor parameters θ and critic parameters ϕ
Initialize model parameters ξ and Vdata parameters ζ
Initialize K environments {E1, . . . , Ek} in parallel
Initialize total time step T , number of epochs E
Initialize rollout size n and chunk size h
Initialize replay buffer D for the model function
for t ∈ [0,floor(T/K)]; t← t+ n do

Initialize rollout store T
for each environment Ei do

Sample and store n-step rollout T← T ∪ τ it:t+n ∼ pπ̂(τ)
end for
Store experience in D← D ∪ T
Update the model function fξ with samples from D
Update V data ← V π

ϕ

for each epoch ∈ [1, E] do
for each chunk τk:k+h ∈ T do

Reparameterize trajectory chunk τ̂k:k+h ← reparam(µθ, fξ, τk:k+h)
Calculate Advantage estimate Âπ

θ using V data and τ̂k:k+h

Calculate VG estimate according to (3.9)
Calculate ∂

∂ϕ
of the value loss with the batch

Update the parameters θ and ϕ
end for

end for
end for

The derivative of the PPO objective in Equation (2.11) is a piecewise function that

describes when the gradient is set to zero and the update is rejected.

34

∇θLCLIP(θ) = Es∼dπ(s),a∼π(a|s)


∇θ log π̂(a|s; θ)rθÂπ if Âπ > 0 and rθ < 1 + ϵ)

∇θ log π̂(a|s; θ)rθÂπ if Âπ < 0 and rθ > 1− ϵ)

0 otherwise
(3.8)

The only term in the PPO objective that depends on θ is contained in the numerator

of the ratio r(s, a). Hence, the non-zero gradient is obtained by ∇θ
π̂(a|s;θ)
π(a|s) =

∇θ log π̂(a|s; θ)rθ. However, in the VG objective, the dependency to θ is built within

the advantage estimate. In this regard, in order to achieve the same clipping behavior,

we propose another objective function in Equation (3.9).

LCLIP
VG (θ) = Es∼dπ(s),a∼π(a|s) =

[
min

(
rÂπ

θ , clip(rÂπ
θ , (1− ϵ)Âπ, (1 + ϵ)Âπ)

)]
(3.9)

We simplify the notation for clarity in Equation (3.9) by removing function inputs and

denoting dependency to the parameter θ by writing it as a subscript. The objective

function LCLIP
VG includes differentiable advantage estimate Âπ

θ of the data generating

policy π. Since in the original objective function, the parameter θ depends only on

the ratio r, clipping it would reject the gradient. Hence, the objective function LCLIP
VG

puts the advantage estimate inside the clip operation so that clip operation may reject

the gradients as the advantage estimate Âπ in the boundary does not depend on the

parameter θ.

Algorithm 4 provides the pseudocode for the VG-PPO algorithm. Here chunks are the

truncated trajectories that contain consecutive transitions from the rollout data. Chunks

allow applying the VG objective on manageable-size trajectories. The computational

graph is built on a trajectory chunk; hence we do not propagate the value gradients

more than h. The proposed model function in this thesis proves to be crucial for

implementing the VG objective to PPO. We show the comparisons of VG-PPO, VG

with the proposed model function, VG with the previously proposed model function,

and PG algorithms in the next chapter.

35

36

4. EXPERIMENTS

In this work we aim to show and propose a solution for gradient divergence issues in

VG-based algorithms on long trajectories. Therefore, we developed an environment

in which the rewards are not just delayed, but their relations between the actions are

one-to-one; hence reward-action dependency is not trivial. We call this environment

Delayed Reward Lookup (DRL). The second benchmark environment that we use

in this thesis is a MuJoCo [13] control task Walker-2d, where the task is to control

a robotic frame that achieves higher results as it traverses along a direction and is

penalized if it falls. Moreover, we show a comparison of the correlation base policy

gradient estimate with the reparameterization-based one. We show that when the

distribution is given, reparameterization enjoys significantly lower variance in the

gradient estimator without introducing a bias. In order to further observe the efficiency

of VG-based policy gradient estimate, we build a maze-like discrete environment

where at each discrete state the agent makes two decisions, one for navigation that

consists of four possible choices and a key decision that determines the reward when

it reaches the goal state. Due to the discrete dynamics of the environment, we were

able to employ Markov Matrices, which do not cause gradient divergence since the

set of Markov matrices is closed under multiplication. We used both an exact model

function and an approximation in the form of a Markov matrix. We show that both the

approximated and the exact model functions are able to specify the key decision that

determines the reward.

4.1 DISCRETE STATE SPACE

In the discrete state space, Markov transition matrices are the natural choice to

represent model functions. Similarly, for the policy function, if the action space is

also discrete, we may represent it with a Markov matrix. We obtain a parametric and

learnable Markov Matrix by applying the row-wise or column-wise softmax function

37

Figure 4.1 : Decision Maze environment. The cells K denotes the key state, G
denotes the goal state and A denotes the location of the action.

to any real-valued matrix. The Jacobian matrix of a state value with respect to policy

parameters is a product of multiple Jacobian Jfs matrices as shown in the recursive

Equation (3.6). Since the Jacobian matrix of the model function and the policy function

are Markov matrices, due to the linearity, the product is also a Markov matrix. Hence

Markov matrices provide non-divergent model and policy functions.

In this experiment, we build a discrete grid-world environment. The state space is

a one-hot vector that has one 1 on the index that denotes the position of this vector

represents, and the remaining indices, except the last one, are all set to 0. The state

vector contains a scalar at the final index that codes the decision given in the key state.

The action space is a multi-discrete space where there are two categorical actions that

an agent in this environment needs to provide. The first categorical action space is

related to the navigation actions left, right, up, and down. The second categorical

action is a simple on-and-off action. The possible values for the intermediate reward in

the environment are -1, 1, and 0. The agent is only given a non-zero reward at the goal

state denoted by the letter G. In the goal state, the reward is determined by the memory

value of the state. The key state, represented by K, denotes the position in which

the memory cell can be modified. The action in the key states directly determines the

memory value, and once it is set, the memory value does not change. Hence, the action

taken in the key state determines the reward at the goal state while still satisfying the

Markov properties. We name this environment Decision Maze, as shown in Figure 4.1

due to the maze-like structure and a critical decision that must be made by the agent.

38

Figure 4.2 : Gradient norm of the reward function at the final state with respect to
actions in a randomly sampled 43 step trajectory. Each box denotes a gradient

magnitude for each action categories in the trajectory.

In our tests, we trained a Markov matrix-based model function with the data collected

by a random agent. We sampled trajectories using a random policy from the

environment. We show that VG objective is able to distinguish critical actions from

unrelated ones. In Figure 4.2, we take the derivative of the last reward with respect

to each action category throughout the sampled trajectory. The derivative with respect

to decision actions is only different at one point where the key state is visited; hence

VG objective is able to capture the relationship between the critical action and the final

reward. In this sampled trajectory, the key state is visited at the same state where the

gradient magnitude is different from the other decision action gradients.

This observation provides intuition for how the VG objective provides a low variance

gradient estimate. However, for actions that are not critical or equally valuable, basic

assumptions like equally distributing the reward, such as in the PG objective, may

suffice. Hence, we observed that some of the environments may not have non-trivial

reward-action relationships. Therefore, VG methods may not improve the variance of

the gradient estimate compared to PG-based estimates if the latter is already able to

capture the relations between actions and rewards. One of the best examples of this

environment is grid-world or maze environments.

In order to observe the sample requirements of VG and PG-based gradient estimates

in the discrete framework with Markov matrices, we conducted another experiment.

We first simplified the environment so that the trajectory length is the same in order

to make a better comparison by removing the navigation aspect of the environment.

39

Figure 4.3 : Comparison between log-trick and reparameterization in terms of
variance and bias. The trajectory length is 10, and there are 20 different discrete
states. The mean and variance for each action in each state is given in the Figure.

Hence, there is only decision action on a fixed-length trajectory. The state vector

contains the memory of the action performed on the first state, hence the reward

function satisfies the Markov property. We experimented with both an exact Markov

matrix of the transition distribution and with a learned one. Although the results shown

in 4.3 are calculated with the exact matrix, the learned one performs very similarly but

only slightly reduces the gradient norm through the starting state.

The statistics in Figure 4.3 is calculated using 1000 sample trajectories. The results

suggest both approaches have the same mean, while log-trick, which is the mechanism

used in the PG objective, introduces variance on every action gradient. The reasoning

behind this is that the PG objective relies on correlation and assumes that all rewards

that are observed after an action are related to that action while only one of them is

related in this environment.

In the discrete case, Markov matrices provide an appropriate set of model functions

that do not lead policy gradients to diverge or vanish. However, that is not generally

applicable since only a small subset of environments, which are mostly toy problems,

have discrete state and action spaces. Nevertheless, these experiments clearly show the

promise of VG approaches.

4.2 DELAYED REWARD LOOKUP

We extend our empirical studies to continuous environments. We crafted a delayed

reward environment where the state has a memory that keeps track of the first k

40

Figure 4.4 : Comparison between PPO and VG-PPO. Both algorithms use the same
hyperparameters. The rollout size is set to trajectory length which is 50. The delay is
set to 25. VG-PPO enjoys faster and slightly better convergence. The shaded region

represents the second and the third quarters of 5 different seeds.

continuous actions made during the trajectory. The intermediate rewards are zero

except for the last k rewards, where the reward function compares a fixed value

assigned for the state of which it evaluates the intermediate reward with the index

of the state vector that corresponds to the memory of one of the past actions.

Similar to the previously mentioned environment, Delayed Reward Lookup (DRL)

environment has a fixed trajectory length. During our comparison, we change the

trajectory length to show the effect of long trajectories in policy optimization.

The state space has the k + n dimensions where k denotes the memory size and n

denotes the trajectory length. Action space is continuous and bounded between -1

and 1. The objective of the environment is to learn the correct decisions that must be

given at the first k steps so that the last k rewards are matched with their corresponding

values. Therefore, after the first k steps, the actions are not related to the objective of

the environment. We denote the reward function at the t’th state with rt(st) and action

at time t with at. The reward function is defined as rt(st) = ∥st(t − n + k) − αt∥2

where αt is a fixed value for the t’th reward function in which the objective is to match

that value with the corresponding index of the state vector st. Let 0 ≤ m ≤ k + n be

any step in a trajectory, the n+ k−m’th index of a state is only affected by the action

am.

41

((a)) VG-PPO with Stiefel manifold. ((b)) SVG with unconstraint model.

Figure 4.5 : Comparison of the model functions with and without Stiefel manifold
constraint. The plots show the statistics of the gradient magnitude of all actions over

the length of the trajectory.

In DRL, we observed that without a constrained model function and when the

trajectory length is 50, the gradient estimate of the VG objective diverges at some step

in the trajectory. We compared VG-PPO and PPO algorithms and show that even with

the model learning, VG-PPO converges faster and to a better overall score as shown in

Figure 4.4.

We also compared VG-PPO with the SVG algorithm. We show that in long trajectories,

the action gradients in the SVG algorithm tend to diverge in Figure 4.5(b). Unlike

SVG, VG-PPO on the Stiefel manifold not only solves the divergence issue but has

an interpretable action gradient distribution, as shown in Figure 4.5(a), such that the

gradient magnitude for the first half of the actions is significantly larger, which relates

to the reward mechanism of the DRL environment.

In these experiments, we show that the model function on the Stiefel manifold enables

VG algorithms on long trajectories. When the model being used by the VG algorithm

is unconstrained such as in [16,21], the model function causes divergent behavior in the

gradient estimate that hinders the performance of VG algorithms on long trajectories.

4.3 ROBOTIC CONTROL TASK

We benchmark the proposed VG-PPO algorithm in the Walker-2d environment, one of

the MuJoCo control tasks. This environment poses a challenge for model learning as it

does for policy optimization due to the complex physical dynamics of the environment.

42

Figure 4.6 : Walker2d environment. Figure contains the comparisons of PPO, A2C,
and VG-PPO-hybrid. The rollout length is set to 64 for all algorithms and remaining

hyperparameters are set to the same values whenever possible. The shaded region
represents the second and the third quarters of 5 different seeds.

We compared VG-PPO, a hybrid version where the loss function contains VG and PG

terms, with PPO, A2C, and SVG(64). Due to the gradient issues in the SVG algorithm

on long trajectories such as the one the we used in this experiment, SVG(64) could

not learn the task. Hence, we did not put SVG(64) into Figure 4.6, which shows a

comparison of VG-PPO with model-free algorithms.

In this environment, we observed that model approximation error hinders the

performance of the VG-based gradient estimator. The complex dynamics in the

walker-2d environment puts a challenge for model learning. We observed that the

VG objective is quite sensitive to the model accuracy, and at the beginning of the

training relying solely on the VG objective may harm the course of the training. Hence,

we employed a hybrid loss in the VG-PPO-hybrid algorithm. The objective function

includes the weighted sum of PG and VG terms. During the beginning of the training,

where the accuracy of the model function is low, we rely solely on the PG objective.

The weight of the VG term increases linearly with each training step of the agent. We

observed that VG-PPO-hybrid does not lead to catastrophic gradients due to the low

accuracy of the model function at the beginning of the training. However, the suggested

algorithm does not outperform its model-free counterpart, yet makes it possible to use

VG objective on long trajectories where the SVG algorithm completely fails. We argue

43

that being unable to reach a sufficiently low model approximation error indicates high

bias in the VG objective hence PG objective can be an alternative in that case.

44

5. CONCLUSIONS

In this thesis, we introduce a family of model functions with a proper learning scheme

that enables Value Gradient (VG) algorithms on long truncated trajectories. Longer

trajectories allow VG objective to capture long-term dependencies with significantly

less variance than Policy Gradient (PG) based gradient estimates. In the discrete state

space experiments, we show that VG-based gradient estimate is able to capture the

long-term reward-action relations on a single randomly sampled trajectory if the model

is given or it is well approximated. Furthermore, we show that compared to PG based

gradient estimate, VG provides almost zero variance gradient estimate.

The focus of this thesis is on building a non-divergent model function such that it

preserves the gradient norm passing through it on a trajectory. We show that if the

neural network that represents the approximate model function contains linear layers

that have unitary weight matrices and non-linearities that are able to preserve the

gradient norm, the model function does not lead to exploding or vanishing gradients

during the policy optimization phase. In order to maintain the characteristic of the

proposed family of neural networks, we employ Riemannian Gradient Descent (RGD).

We model the optimization problem as a constraint problem where the constraints

are forcing weight matrices to lie on the Stiefel manifold (St). We argued that

parameterization of the weight matrices with matrix exponential function provides a

solution for the proposed optimization problem.

In addition, we implement the VG objective on model-free Proximal Policy

Optimization (PPO) algorithm that enjoys sample efficiency via a sample reuse

mechanism. The combined algorithm is called VG-PPO. The proposed model

function is a critical addition in VG-PPO since PPO typically relies on long truncated

trajectories and Monte Carlo (MC) sampling-like value estimations. We show the

efficiency of VG-PPO in a continuous task where the reward-action dependencies are

long and not trivial. We observed that a model function on the Stiefel manifold reflects

45

the learned dynamics of the environment onto the policy gradient estimate besides

preventing divergence.

We further test VG-PPO in a challenging robotic simulation called Walker-2d.

However, due to the model approximation errors, the training process of VG-PPO

becomes unstable. Therefore, we introduced the VG-PPO-hybrid algorithm that

includes both VG and PG terms in the policy optimization objective. We observed

an improvement, but VG-PPO-hybrid lacks behind the performance of its model-free

counterpart, albeit being able to utilize value estimate on 64-step truncated trajectories.

We observed that the model approximation plays a critical role in the VG objective

since the VG-based gradient estimate is sensitive to the approximation errors in the

model function. We argued that higher capacity models would make it possible to run

VG-PPO on environments with complex dynamics. Our observations suggest a hybrid

approach may better generalize the gradient estimates in policy optimization. When

the model approximation is not sufficiently low, the algorithm may rely more on the

PG term and if the approximation error is low, the algorithm may increase the weight

of the VG term in the objective.

5.1 FUTURE DIRECTIONS

In this thesis, we show a promising approach for designing model functions

that enables VG algorithms on long trajectories. Yet, there are several possible

improvements or modifications that can be made for the proposed algorithms. We

state some of them that we find valuable.

Reparameterized Distribution: For the reparameterization of the model function,

we assumed the transition distribution is a Gaussian distribution with independent

axes. Instead, a flow function that transforms a trivial distribution to match the target

distribution may represent the model function. This would allow fitting complex

transition distributions while still providing differentiable samples. However, the flow

function must be designed such that it does not lead to exploding or vanishing gradient

problem. In the design of such flow functions, Stiefel manifold may provide the

matrices for the transformations in the flow function.

46

Attention Mechanism: In this work, we proposed a model function similar to

recurrent neural networks in which it is recursively called on a trajectory. Instead, an

alternative approach can be employed for capturing long-term dependencies between

actions and rewards. Attention in time is a promising direction for policy optimization,

and VG may provide a mathematical baseline for such approaches. An unsupervised

attention-based sequence learning function may learn to attend to related actions or

rewards during the unsupervised training. This attention map can be utilized in policy

optimization, similar to the VG approach, to improve the gradient estimate.

Multi Task Learning: We observed in our empirical studies, a well-approximated

model function enables VG objective to provide low bias and variance gradient

estimates. However, training a model function and performing policy optimization

simultaneously may cause a delay in the model approximation performance.

Furthermore, model learning is independent from tasks and can be seen as an

unsupervised problem given diverse enough interaction data. Hence a learned model

can be shared among several related tasks where a value approximation can not be

shared due to its direct relation with the task and the related reward. Hence, VG offers

a scalable approach for multi-task learning compared to model-free PG algorithms. We

argue that multi-task learning can benefit from VG approaches more than single-task

learning.

47

48

REFERENCES

[1] Sutton, R.S. and Barto, A.G. (2018). Reinforcement Learning: An Introduction,
The MIT Press, second edition, http://incompleteideas.net/
book/the-book-2nd.html.

[2] Tesauro, G. (1994). TD-Gammon, a Self-Teaching Backgammon Program,
Achieves Master-Level Play., Neural Comput., 6(2), 215–219,
http://dblp.uni-trier.de/db/journals/neco/neco6.
html#Tesauro94.

[3] Williams, R.J. (1992). Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning, Mach. Learn., 8(3–4), 229–256,
https://doi.org/10.1007/BF00992696.

[4] Schulman, J., Moritz, P., Levine, S., Jordan, M.I. and Abbeel, P. (2016).
High-Dimensional Continuous Control Using Generalized Advantage
Estimation, Y. Bengio and Y. LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, http://arxiv.
org/abs/1506.02438.

[5] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017).
Proximal Policy Optimization Algorithms., CoRR, abs/1707.06347,
http://dblp.uni-trier.de/db/journals/corr/
corr1707.html#SchulmanWDRK17.

[6] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T.,
Silver, D. and Kavukcuoglu, K. (2016). Asynchronous Methods for Deep
Reinforcement Learning, M.F. Balcan and K.Q. Weinberger, editors,
Proceedings of The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research, PMLR, New
York, New York, USA, pp.1928–1937, https://proceedings.
mlr.press/v48/mniha16.html.

[7] Hafner, D., Lillicrap, T.P., Ba, J. and Norouzi, M. (2020). Dream to Control:
Learning Behaviors by Latent Imagination, 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020, OpenReview.net, https://openreview.net/
forum?id=S1lOTC4tDS.

[8] Hafner, D., Lillicrap, T.P., Norouzi, M. and Ba, J. (2021). Mastering
Atari with Discrete World Models, 9th International Conference on

49

Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021, OpenReview.net, https://openreview.net/forum?id=
0oabwyZbOu.

[9] Janner, M., Fu, J., Zhang, M. and Levine, S. (2019). When to Trust Your
Model: Model-Based Policy Optimization, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32, Curran
Associates, Inc., https://proceedings.neurips.cc/paper/
2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.
pdf.

[10] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,
Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T. and Hassabis,
D. (2016). Mastering the Game of Go with Deep Neural Networks and
Tree Search, Nature, 529(7587), 484–489.

[11] McGrath, T., Kapishnikov, A., Tomasev, N., Pearce, A., Hassabis, D., Kim, B.,
Paquet, U. and Kramnik, V. (2021). Acquisition of Chess Knowledge
in AlphaZero, CoRR, abs/2111.09259, https://arxiv.org/abs/
2111.09259, 2111.09259.

[12] Bellemare, M.G., Naddaf, Y., Veness, J. and Bowling, M. (2012). The Arcade
Learning Environment: An Evaluation Platform for General Agents,
Journal of Artificial Intelligence Research, Vol. 47, 253–279, http:
//arxiv.org/abs/1207.4708, cite arxiv:1207.4708.

[13] Todorov, E., Erez, T. and Tassa, Y. (2012). MuJoCo: A physics engine
for model-based control, 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp.5026–5033.

[14] Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R.H.,
Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S.,
Sepassi, R., Tucker, G. and Michalewski, H. (2019). Model-Based
Reinforcement Learning for Atari, CoRR, abs/1903.00374, http://
arxiv.org/abs/1903.00374, 1903.00374.

[15] Pathak, D., Agrawal, P., Efros, A.A. and Darrell, T. (2017). Curiosity-driven
Exploration by Self-supervised Prediction, ICML.

[16] Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T. and Tassa, Y. (2015).
Learning Continuous Control Policies by Stochastic Value Gradients,
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28, Curran
Associates, Inc., https://proceedings.neurips.cc/paper/
2015/file/148510031349642de5ca0c544f31b2ef-Paper.
pdf.

50

[17] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D. and Wierstra, D. (2016). Continuous control with deep reinforcement
learning, Y. Bengio and Y. LeCun, editors, 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, http://arxiv.org/abs/
1509.02971.

[18] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D. and Riedmiller,
M. (2014). Deterministic Policy Gradient Algorithms, E.P. Xing and
T. Jebara, editors, Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Re-
search, PMLR, Bejing, China, pp.387–395, https://proceedings.
mlr.press/v32/silver14.html.

[19] Barth-Maron, G., Hoffman, M.W., Budden, D., Dabney, W., Horgan, D.,
TB, D., Muldal, A., Heess, N. and Lillicrap, T.P. (2018). Distributed
Distributional Deterministic Policy Gradients, CoRR, abs/1804.08617,
http://arxiv.org/abs/1804.08617, 1804.08617.

[20] Fujimoto, S., van Hoof, H. and Meger, D. (2018). Addressing Function
Approximation Error in Actor-Critic Methods, CoRR, abs/1802.09477,
http://arxiv.org/abs/1802.09477, 1802.09477.

[21] Amos, B., Stanton, S., Yarats, D. and Wilson, A.G. (2021). On the Model-Based
Stochastic Value Gradient for Continuous Reinforcement Learning
learning, A. Jadbabaie, J. Lygeros, G.J. Pappas, P. A.nbsp;Parrilo,
B. Recht, C.J. Tomlin and M.N. Zeilinger, editors, Proceedings of the
3rd Conference on Learning for Dynamics and Control, volume144 of
Proceedings of Machine Learning Research, PMLR, pp.6–20, https:
//proceedings.mlr.press/v144/amos21a.html.

[22] Lezcano-Casado, M. (2019). Trivializations for gradient-based optimization on
manifolds, Advances in Neural Information Processing Systems, NeurIPS,
pp.9154–9164.

[23] Fairbank, M. and Alonso, E. (2012). Value-gradient learning, The 2012
International Joint Conference on Neural Networks (IJCNN), 1–8.

[24] Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. (2018). Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor, J. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, PMLR, pp.1861–1870, https:
//proceedings.mlr.press/v80/haarnoja18b.html.

[25] Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk,
H. and Bengio, Y. (2014). Learning phrase representations using
RNN encoder-decoder for statistical machine translation, Conference on
Empirical Methods in Natural Language Processing (EMNLP 2014).

51

[26] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory, Neural
computation, 9(8), 1735–1780.

[27] Li, C., Wang, Y., Chen, W., Liu, Y., Ma, Z.M. and Liu, T.Y. (2022). Gradient
Information Matters in Policy Optimization by Back-propagating through
Model, International Conference on Learning Representations, https:
//openreview.net/forum?id=rzvOQrnclO0.

[28] Ma, M., D’Oro, P., Bengio, Y. and Bacon, P.L. (2021). Long-Term
Credit Assignment via Model-based Temporal Shortcuts, Deep RL
Workshop NeurIPS 2021, https://openreview.net/forum?id=
doy35IAGewq.

[29] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, Ł. and Polosukhin, I. (2017). Attention is all you need, Advances
in Neural Information Processing Systems, pp.5998–6008.

[30] Zheng, Q., Zhang, A. and Grover, A. (2022). Online Decision Transformer,
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu and
S. Sabato, editors, Proceedings of the 39th International Conference
on Machine Learning, volume162 of Proceedings of Machine Learning
Research, PMLR, pp.27042–27059, https://proceedings.mlr.
press/v162/zheng22c.html.

[31] Janner, M., Li, Q. and Levine, S. (2021). Offline Reinforcement Learning as
One Big Sequence Modeling Problem, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang and J.W. Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, Curran Associates, Inc.,
pp.1273–1286, https://proceedings.neurips.cc/paper/
2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.
pdf.

[32] Arjovsky, M., Shah, A. and Bengio, Y. (2016). Unitary evolution recurrent
neural networks, International conference on machine learning, PMLR,
pp.1120–1128.

[33] Agarap, A.F. (2018). Deep Learning using Rectified Linear Units (ReLU), http:
//arxiv.org/abs/1803.08375, cite arxiv:1803.08375Comment:
7 pages, 11 figures, 9 tables.

[34] Deng, L. (2012). The mnist database of handwritten digit images for machine
learning research, IEEE Signal Processing Magazine, 29(6), 141–142.

[35] Wisdom, S., Powers, T., Hershey, J.R., Roux, J.L. and Atlas, L. (2016).
Full-Capacity Unitary Recurrent Neural Networks, Proceedings of the
30th International Conference on Neural Information Processing Systems,
NIPS’16, Curran Associates Inc., Red Hook, NY, USA, p.4887–4895.

[36] Maduranga, K.D.G., Helfrich, K.E. and Ye, Q. (2019). Complex Unitary
Recurrent Neural Networks Using Scaled Cayley Transform, Proceedings

52

of the Thirty-Third AAAI Conference on Artificial Intelligence and
Thirty-First Innovative Applications of Artificial Intelligence Conference
and Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, AAAI’19/IAAI’19/EAAI’19, AAAI Press, https://
doi.org/10.1609/aaai.v33i01.33014528.

[37] Helfrich, K., Whimott, D. and Ye, Q. (2018). Orthogonal recurrent neural
networks with scaled Cayley transform, J. Dy and A. Krause, editors,
35th International Conference on Machine Learning, ICML 2018,
35th International Conference on Machine Learning, ICML 2018,
pp.3133–3143, funding Information: This research was supported in part
by NSF Grants DMS-1317424 and DMS-1620082. Publisher Copyright:
© 2018 by authors.All right reserved.; null ; Conference date: 10-07-2018
Through 15-07-2018.

[38] Lezcano-Casado, M. (2019). Trivializations for Gradient-Based Optimization on
Manifolds, Curran Associates Inc., Red Hook, NY, USA.

[39] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A.,
Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J. and Chintala, S., (2019). PyTorch: An
Imperative Style, High-Performance Deep Learning Library, Advances
in Neural Information Processing Systems 32, Curran Associates,
Inc., pp.8024–8035, http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[40] Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P.
(2015). Trust Region Policy Optimization, F. Bach and D. Blei,
editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research,
PMLR, Lille, France, pp.1889–1897, https://proceedings.mlr.
press/v37/schulman15.html.

[41] Kakade, S. and Langford, J. (2002). Approximately Optimal Approximate
Reinforcement Learning, Proceedings of the Nineteenth International
Conference on Machine Learning, ICML ’02, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, p.267–274.

[42] Kingma, D.P. and Welling, M. (2014). Auto-Encoding Variational Bayes, 2nd
International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings, http:
//arxiv.org/abs/1312.6114v10.

[43] Bengio, Y., Léonard, N. and Courville, A.C. (2013). Estimating or Propagating
Gradients Through Stochastic Neurons for Conditional Computa-
tion, CoRR, abs/1308.3432, http://arxiv.org/abs/1308.3432,
1308.3432.

53

54

55

